We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Chapter 2 serves as a primer on quantum mechanics tailored for quantum computing. It reviews essential concepts such as quantum states, operators, superposition, entanglement, and the probabilistic nature of quantum measurements. This chapter focuses on two-level quantum systems (i.e. qubits). Mathematical formulations that are specific to quantum mechanics are introduced, such as Dirac (bra–ket) notation, the Bloch sphere, density matrices, and Kraus operators. This provides the reader with the necessary tools to understand quantum algorithms and the behaviour of quantum systems. The chapter concludes with a review of the quantum harmonic oscillator, a model to describe quantum systems that are complementary to qubits and used in some quantum computer implementations.
The axioms of quantum physics imply that in general it makes no sense to speak of the long-term behaviour of a quantum walk. In this chapter we introduce a process that allows us to develop a meaningful substitute for a simple average.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.