We give an algorithm for removing stackiness from smooth, tame Artin stacks with abelian stabilisers by repeatedly applying stacky blow-ups. The construction works over a general base and is functorial with respect to base change and compositions with gerbes and smooth, stabiliser-preserving maps. As applications, we indicate how the result can be used for destackifying general Deligne–Mumford stacks in characteristic $0$, and to obtain a weak factorisation theorem for such stacks. Over an arbitrary field, the method can be used to obtain a functorial algorithm for desingularising varieties with simplicial toric quotient singularities, without assuming the presence of a toroidal structure.