We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
In this chapter, we will highlight the interesting connection between finite and infinite dimensional differential geometry. To this end, we shall consider Lie groupoids, which can be understood as elements from higher geometry. The moniker higher geometry stems from the fact that in the language of category theory, these objects form higher categories. Previously we discussed how finite-dimensional manifolds and geometric structures give rise to infinite-dimensional structures such as Lie groups (e.g. the diffeomorphims and groups of gauge transformations) and Riemannian metrics (such as the L^2-metric from shape analysis). While a manifold determines an (in general infinite-dimensional) group of diffeomorphisms, we turn this observation now on its head and investigate whether the underlying finite-dimensional geometric structure is recognisable from its associated infinite dimensional object.
In this chapter, one aim is to study spaces of mappings taking their values in a Lie group. It will turn out that these spaces carry again a natural Lie group structure. However, before we prove this, the definition and basic properties of (infinite dimensional) Lie groups and their associated Lie algebras are recalled. Infinite-dimensional Lie theory (beyond Banach spaces) is by comparison relatively young and in its modern form goes back to Milnor’s seminal works. One key feature of infinite-dimensional Lie theory is that the conncection between Lie algebra and Lie group is looser then in finite dimensions. For advanced tools in Lie theory one has to require the Lie group to be regular (in the sense of Milnor). These concepts are introduced and considered for several main classes of examples, such as the diffeomorphism groups, loop groups and gauge groups.
We show a rigidity theorem for the Seiberg–Witten invariants mod 2 for families of spin 4-manifolds. A mechanism of this rigidity theorem also gives a family version of 10/8-type inequality. As an application, we prove the existence of non-smoothable topological families of 4-manifolds whose fiber, base space, and total space are smoothable as manifolds. These non-smoothable topological families provide new examples of $4$-manifolds $M$ for which the inclusion maps $\operatorname {Diff}(M) \hookrightarrow \operatorname {Homeo}(M)$ are not weak homotopy equivalences. We shall also give a new series of non-smoothable topological actions on some spin $4$-manifolds.
We consider Hölder continuous cocycles over an accessible partially hyperbolic system with values in the group of diffeomorphisms of a compact manifold
$\mathcal {M}$
. We obtain several results for this setting. If a cocycle is bounded in
$C^{1+\gamma }$
, we show that it has a continuous invariant family of
$\gamma $
-Hölder Riemannian metrics on
$\mathcal {M}$
. We establish continuity of a measurable conjugacy between two cocycles assuming bunching or existence of holonomies for both and pre-compactness in
$C^0$
for one of them. We give conditions for existence of a continuous conjugacy between two cocycles in terms of their cycle weights. We also study the relation between the conjugacy and holonomies of the cocycles. Our results give arbitrarily small loss of regularity of the conjugacy along the fiber compared to that of the holonomies and of the cocycle.
We prove completeness for the main examples of infinite-dimensional Lie groups and some related topological groups. Consider a sequence $G_{1}\subseteq G_{2}\subseteq \cdots \,$ of topological groups $G_{n}$ n such that $G_{n}$ is a subgroup of $G_{n+1}$ and the latter induces the given topology on $G_{n}$, for each $n\in \mathbb{N}$. Let $G$ be the direct limit of the sequence in the category of topological groups. We show that $G$ induces the given topology on each $G_{n}$ whenever $\cup _{n\in \mathbb{N}}V_{1}V_{2}\cdots V_{n}$ is an identity neighbourhood in $G$ for all identity neighbourhoods $V_{n}\subseteq G_{n}$. If, moreover, each $G_{n}$ is complete, then $G$ is complete. We also show that the weak direct product $\oplus _{j\in J}G_{j}$ is complete for each family $(G_{j})_{j\in J}$ of complete Lie groups $G_{j}$. As a consequence, every strict direct limit $G=\cup _{n\in \mathbb{N}}G_{n}$ of finite-dimensional Lie groups is complete, as well as the diffeomorphism group $\text{Diff}_{c}(M)$ of a paracompact finite-dimensional smooth manifold $M$ and the test function group $C_{c}^{k}(M,H)$, for each $k\in \mathbb{N}_{0}\cup \{\infty \}$ and complete Lie group $H$ modelled on a complete locally convex space.
The group of ${\mathcal{C}}^{1}$-diffeomorphisms of any sparse Cantor subset of a manifold is countable and discrete (possibly trivial). Thompson’s groups come out of this construction when we consider central ternary Cantor subsets of an interval. Brin’s higher-dimensional generalizations $nV$ of Thompson’s group $V$ arise when we consider products of central ternary Cantor sets. We derive that the ${\mathcal{C}}^{2}$-smooth mapping class group of a sparse Cantor sphere pair is a discrete countable group and produce this way versions of the braided Thompson groups.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.