We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We show that the theory of Galois actions of a torsion Abelian group A is companionable if and only if, for each prime p, the p-primary part of A is either finite or it coincides with the Prüfer p-group. We also provide a model-theoretic description of the model companions we obtain.
We investigate when a computable automorphism of a computable field can be effectively extended to a computable automorphism of its (computable) algebraic closure. We then apply our results and techniques to study effective embeddings of computable difference fields into computable difference closed fields.
A model companion is shown to exist for the theory of partial differential fields of characteristic zero equipped with free operators that commute with the derivations. The free operators here are those introduced in [R. Moosa and T. Scanlon, Model theory of fields with free operators in characteristic zero, Journal of Mathematical Logic 14(2), 2014]. The proof relies on a new lifting lemma in differential algebra: a differential version of Hensel’s Lemma for local finite algebras over differentially closed fields.
The notion of a prolongation of an algebraic variety is developed in an abstract setting that generalizes the difference and (Hasse) differential contexts. An interpolating map that compares these prolongation spaces with algebraic jet spaces is introduced and studied.
We introduce and describe the characteristic class of a difference operator over the difference field (k((t)),τ). Here k is an algebraically closed field of characteristic zero and τ is the k-linear automorphism of k((t)) defined by τ(t)=t/(1+t). The approach is based on the characterization of simple difference operators in terms of their eigenvalues.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.