This paper proposes a model-based family of detection and quantification statistics to evaluate response bias in item bundles of any size. Compensatory (CDRF) and non-compensatory (NCDRF) response bias measures are proposed, along with their sample realizations and large-sample variability when models are fitted using multiple-group estimation. Based on the underlying connection to item response theory estimation methodology, it is argued that these new statistics provide a powerful and flexible approach to studying response bias for categorical response data over and above methods that have previously appeared in the literature. To evaluate their practical utility, CDRF and NCDRF are compared to the closely related SIBTEST family of statistics and likelihood-based detection methods through a series of Monte Carlo simulations. Results indicate that the new statistics are more optimal effect size estimates of marginal response bias than the SIBTEST family, are competitive with a selection of likelihood-based methods when studying item-level bias, and are the most optimal when studying differential bundle and test bias.