The characterization of the three-dimensional arrangement of dislocations is important for many analyses in materials science. Dislocation tomography in transmission electron microscopy is conventionally accomplished through intensity-based reconstruction algorithms. Although such methods work successfully, a disadvantage is that they require many images to be collected over a large tilt range. Here, we present an alternative, semi-automated object-based approach that reduces the data collection requirements by drawing on the prior knowledge that dislocations are line objects. Our approach consists of three steps: (1) initial extraction of dislocation line objects from the individual frames, (2) alignment and matching of these objects across the frames in the tilt series, and (3) tomographic reconstruction to determine the full three-dimensional configuration of the dislocations. Drawing on innovations in graph theory, we employ a node-line segment representation for the dislocation lines and a novel arc-length mapping scheme to relate the dislocations to each other across the images in the tilt series. We demonstrate the method for a dataset collected from a dislocation network imaged by diffraction-contrast scanning transmission electron microscopy. Based on these results and a detailed uncertainty analysis for the algorithm, we discuss opportunities for optimizing data collection and further automating the method.