We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Undoped and Si-doped GaN films were grown by low pressure MOCVD on (0001) sapphire substrates. The angular distribution of the X-ray diffraction corresponding to the (0002), (0004), (100), (200), and (114) reflections has been measured by means of double- and triple -crystal diffractometry with Mo Kα1 and Cu Kα1 radiation under conditions of symmetrical and asymmetrical Bragg- and Laue-geometry. In our experiments a non-coplanar geometry was also applied. On the basis of the performed studies, five independent components of the tensor of microdistortion were evaluated and the average grain-size in two directions was determined. The type, position, and density of dislocations were established as well. The role of dislocations in strain relaxation and their influence on the optical and electrical properties are discussed.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.