We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We introduce and study (weakly) semi-equational theories, generalizing equationality in stable theories (in the sense of Srour) to the NIP context. In particular, we establish a connection to distality via one-sided strong honest definitions; demonstrate that certain trees are semi-equational, while algebraically closed valued fields are not weakly semi-equational; and obtain a general criterion for weak semi-equationality of an expansion of a distal structure by a new predicate.
In this note, we construct a distal expansion for the structure $$\left( {; + , < ,H} \right)$$, where $H \subseteq $ is a dense $Q$-vector space basis of $R$ (a so-called Hamel basis). Our construction is also an expansion of the dense pair $\left( {; + , < ,} \right)$ and has full quantifier elimination in a natural language.
Answering a special case of a question of Chernikov and Simon, we show that any non-dividing formula over a model M in a distal NIP theory is a member of a consistent definable family, definable over M.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.