We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We define diversity measures that take account of the varying similarities between species, and show how they can be used. We state an unexpected theorem on maximizing diversity: there is a single abundance distribution that maximizes diversity from all viewpoints simultaneously. There follows a broad-brush survey of magnitude, which is closely related to maximum diversity and is defined in the very wide generality of enriched categories. In the case of metric spaces, magnitude encodes fundamental geometric invariants of size (such as volume, surface area and dimension) and is related to the concept of capacity in potential theory.
We introduce two families of deformations of Shannon entropy: the q-logarithmic entropies (also called “Tsallis entropies”) and the Rényi entropies. We explain how the exponentials of the Rényi entropies, called the Hill numbers, convey information about the diversity and structure of an ecological community. We introduce the power means, which lie at the technical heart of this book. We give functional equations characterizing the q-logarithmic entropies on the one hand, and the Hill numbers on the other.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.