Revealed preference is the dominant approach for inferring preferences, but it is limited in that it relies solely on discrete choice data. When a person chooses one alternative over another, we cannot infer the strength of their preference or predict how likely they will be to make the same choice again. However, the choice process also produces response times (RTs), which are continuous and easily observable. It has been shown that RTs often decrease with strength-of-preference. This is a basic property of sequential sampling models such as the drift diffusion model. What remains unclear is whether this relationship is sufficiently strong, relative to the other factors that affect RTs, to allow us to reliably infer strength-of-preference across individuals. Using several experiments, we show that even when every subject chooses the same alternative, we can still rank them based on their RTs and predict their behavior on other choice problems. We can also use RTs to predict whether a subject will repeat or reverse their decision when presented with the same choice problem a second time. Finally, as a proof-of-concept, we demonstrate that it is also possible to recover individual preference parameters from RTs alone. These results demonstrate that it is indeed possible to use RTs to infer preferences.