We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The fundamentals of droplet formation and motion are discussed, highlighting the importance to intensification of contactor hydraulic performance and mass transfer kinetics. A detailed review of the relationships dictating drop formation, drop size, and velocity in liquid–liquid systems is included. Dynamic behavior during drop formation and the mode of drop detachment from a nozzle are described. The behavior of single discrete drops in unhindered motion is considered, and then developed into the analysis of swarms of drops in hindered motion and in sprays. Key literature discussing droplet behavior is reviewed, with presentation of correlations for prediction of drop size and velocity in these cases. An overview of drop size correlations for liquid–liquid mixtures in stirred vessels is presented. This is followed by a review of correlations developed for drop size in continuous column contactors of various types. These include the Kühni column, the pulsed Karr column, packed columns, spray columns, and rotating disk columns. Quantitative modeling of dispersion and coalescence in stirred vessels based on a population balance approach is also described.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.