We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
In the ion cyclotron range of frequency (ICRF), the presence of a lower hybrid (LH) resonance can appear in the edge of a tokamak plasma and lead to deleterious edge power depositions. An analytic formula for these losses is derived in the cold plasma approximation and for a slab geometry using an asymptotic approach and an analytical continuation near the LH resonance. The way to minimize these losses in a large machine like ITER is discussed. An internal verification between the power loss computed with the semi-analytical code ANTITER IV for ion cyclotron resonance heating (ICRH) and the analytic result is performed. This allows us to check the precision of the numerical integration of the singular set of cold plasma wave differential equations. The set of cold plasma equations used is general and can be applied in other parameters domain.
An ion cyclotron resonance heating (ICRH) antenna system must launch radio frequency (RF) power with a wavenumber spectrum which maximizes the coupling to the plasma. It should also ensure good absorption while minimizing the wave interaction with the plasma edge. Such interactions lead to impurity release, whose effect has been measured far from the antenna location (Klepper et al. 2013; Wukitch et al. 2017; Perkins et al. 2019) and can involve the entire scrape-off layer. In the normal heating scenario, for which the frequency of the waves launched by the antenna is larger than the ion cyclotron frequency of the majority ions $\omega > \omega _{\textrm {ci},\textrm {maj}}$, release of impurities due to ICRH can be affected by minimizing the low $|k_{\parallel }| < k_0$ power spectrum components of the antenna. Impurity release can be the result of low central absorption of the waves or power transfer from the fast to the slow wave due to the presence of a confluence in the plasma edge. In ASDEX Upgrade (AUG), a reduction of heavy impurity release by ICRH in the plasma was qualitatively well correlated to the parallel electric field and RF currents flowing around the antenna (Bobkov et al. 2017). In this article, we first show a correlation between the reduction in impurity release by ICRH in AUG and the rejection of the low $|k_{\parallel }| < k_0$ region of the antenna power spectrum. We show that the same correlation holds for results obtained in the Alcator C-Mod tokamak. Finally, using this idea, we reproduce ICRH induced impurity release behaviour in a not yet published experiments of JET, and make predictions for ITER and DEMO.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.