The technology of electrochemical energy storage (EES) is supposed to play a key role inthe near future for mobility systems characterized by electric vehicles as well as forstationary applications providing energy supply as they represent the interface betweentransport and energy networks. The performance of EES systems is closely linked to theapplied battery materials which contain metals often considered critical. For determiningcriticality of metals different approaches have been used which however evaluate suchmaterials for the economy as a whole. What has been missing up till now is the examinationof critical raw materials for individual technologies.Therefore it is intended to developa technology specific criticality indicator for battery materials.The focus of this paperis developing a method to indicate the significance of raw materials for electrochemicalactive materials used by lithium-ion batteries (LIB) which are currently very promisingEES for mobile and stationary applications. In order to implement this at first thefollowing three aspects were analyzed and put in relation to each other: importance ofelectrode materials, amount of metal in the active material and exploitable metalreserves. The combination of these factors resulted in a relevance index (RI) which allowsdetermining the relevance of raw materials in different types of LIBs. Based on this indexthe development of a technology specific criticality indicator has to integrate furtheraspects being the focus of future work.