We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
In this chapter, we overview recent developments of a simulation framework capable of capturing the highly nonequilibrium physics of the strongly coupled electron and phonon systems in quantum cascade lasers (QCLs). In midinfrared (mid-IR) devices, both electronic and optical phonon systems are largely semiclassical and described by coupled Boltzmann transport equations, which we solve using an efficient stochastic technique known as ensemble Monte Carlo. The optical phonon system is strongly coupled to acoustic phonons, the dominant carriers of heat, whose dynamics and thermal transport throughout the whole device are described via a global heat-diffusion solver. We discuss the roles of nonequilibrium optical phonons in QCLs at the level of a single stage , anisotropic thermal transport of acoustic phonons in QCLs, outline the algorithm for multiscale electrothermal simulation, and present data for a mid-IR QCL based on this framework.
Leading graphene research theorist Mikhail I. Katsnelson systematically presents the basic concepts of graphene physics in this fully revised second edition. The author illustrates and explains basic concepts such as Berry phase, scaling, Zitterbewegung, Kubo, Landauer and Mori formalisms in quantum kinetics, chirality, plasmons, commensurate-incommensurate transitions and many others. Open issues and unsolved problems introduce the reader to the latest developments in the field. New achievements and topics presented include the basic concepts of Van der Waals heterostructures, many-body physics of graphene, electronic optics of Dirac electrons, hydrodynamics of electron liquid and the mechanical properties of one atom-thick membranes. Building on an undergraduate-level knowledge of quantum and statistical physics and solid-state theory, this is an important graduate textbook for students in nanoscience, nanotechnology and condensed matter. For physicists and material scientists working in related areas, this is an excellent introduction to the fast-growing field of graphene science.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.