On Hurd Peninsula (Livingston Island) neotectonic features, such as faults, affect the landforms and emerged marine levels. A detailed local study of these features provides information on the recent structural and geomorphological evolution of the area. We suggest that Hurd Peninsula is divided into several tectonic blocks separated by faults. Movement of the faults determines the relative altitude of these blocks and, in consequence, their susceptibility to glacial, periglacial or marine processes. Although some of the tectonic movements reflected in the landforms may have been inherited from former phases of deformation, some of the neotectonic faulting has a maximum lower Miocene age. A new method of correlation of emerged beach levels is suggested and the possibility of analysing the effects of neotectonic deformations from their analysis is discussed. The application of the methods tested here to other areas of the South Shetland archipelago could provide insights into the timing and mechanisms of recent tectonic evolution.