We study the stabilization of global solutions of theKawahara (K) equation in a bounded interval, under the effect ofa localized damping mechanism. The Kawahara equation is a modelfor small amplitude long waves. Using multiplier techniques andcompactness arguments we prove the exponential decay of the solutions of the (K) model. The proofrequires of a unique continuation theorem and the smoothing effectof the (K) equation on the real line, which are proved in this work.