The global challenge of methane emissions from enteric fermentation is critical, as it contributes significantly to atmospheric greenhouse gases and represents a loss of energy that could otherwise be utilized by ruminants. With the increasing demand for dairy and meat products, finding effective methods to reduce methane production is essential. This review explores the use of advanced meta-omics techniques – including metagenomics, metatranscriptomics, metaproteomics, and metabolomics – to deepen our understanding of ruminal methane production and identify potential strategies for its mitigation. These high-throughput technologies provide comprehensive insights into the rumen microbial communities and their metabolic functions by analyzing DNA, RNA, proteins, and metabolites directly from environmental samples. Metagenomics and metatranscriptomics offer a detailed view of microbial diversity and gene expression, while metaproteomics can identify specific enzymes and proteins directly involved in methane production pathways, revealing potential targets for mitigation strategies. Integrating these meta-omics approaches allows for a holistic understanding of the microbial processes that drive methane emissions, enabling the development of more precise interventions, such as tailored dietary modifications and the use of specific inhibitors. This review underscores the importance of a multi-omics strategy in characterizing microbial roles and interactions within the rumen, which is crucial for devising effective and sustainable methods to reduce methane emissions without compromising livestock productivity.