We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Let $(A_m)_{m \in {\mathop Z}}$ be a sequence of bounded linear maps acting on an arbitrary Banach space X and admitting an exponential trichotomy and let $f_m:X \to X$ be a Lispchitz map for every $m\in {\mathop Z} $. We prove that whenever the Lipschitz constants of $f_m$, $m \in {\mathop Z} $, are uniformly small, the nonautonomous dynamics given by $x_{m+1}=A_mx_m+f_m(x_m)$, $m\in {\mathop Z} $, has various types of shadowing. Moreover, if X is finite dimensional and each $A_m$ is invertible we prove that a converse result is also true. Furthermore, we get similar results for one-sided and continuous time dynamics. As applications of our results, we study the Hyers–Ulam stability for certain difference equations and we obtain a very general version of the Grobman–Hartman's theorem for nonautonomous dynamics.
For a dynamics on the whole line, for both discrete and continuous time, we extend a result of Pliss that gives a characterization of the notion of a trichotomy in various directions. More precisely, the result gives a characterization in terms of an admissibility property in the whole line (namely, the existence of bounded solutions of a linear dynamics under any nonlinear bounded perturbation) of the existence of a trichotomy, i.e. of exponential dichotomies in the future and in the past, together with a certain transversality condition at time zero. In particular, we consider arbitrary linear operators acting on a Banach space as well as sequences of norms instead of a single norm, which allows us to consider the general case of non-uniform exponential behaviour.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.