We consider linear elliptic systems which arisein coupled elastic continuum mechanical models. In these systems, the straintensor ε P := sym (P -1∇u) is redefined to include amatrix valued inhomogeneity P(x) which cannot be described by a spacedependent fourth order elasticity tensor. Such systems arise naturally ingeometrically exact plasticity or in problems with eigenstresses.The tensor field P induces a structural change of the elasticity equations. Forsuch a model the FETI-DP method is formulated and a convergence estimateis provided for the special case that P -T = ∇ψ is a gradient.It is shown that the condition number depends only quadratic-logarithmicallyon the number of unknowns of each subdomain. Thedependence of the constants of the bound on P is highlighted. Numericalexamples confirm our theoretical findings. Promising results are also obtainedfor settings which are not covered by our theoretical estimates.