We focus on supercritical decomposable (reducible) multitype branching processes. Types are partitioned into irreducible equivalence classes. In this context, extinction of some classes is possible without the whole process becoming extinct. We derive criteria for the almost-sure extinction of the whole process, as well as of a specific class, conditionally given the class of the initial particle. We give sufficient conditions under which the extinction of a class implies the extinction of another class or of the whole process. Finally, we show that the extinction probability of a specific class is the minimal nonnegative solution of the usual extinction equation but with added constraints.