The cubic version of the Lucas cryptosystem is set up based on the cubic recurrence relation of the Lucas function by Said and Loxton [‘A cubic analogue of the RSA cryptosystem’, Bull. Aust. Math. Soc.68 (2003), 21–38]. To implement this type of cryptosystem in a limited environment, it is necessary to accelerate encryption and decryption procedures. Therefore, this paper concentrates on improving the computation time of encryption and decryption in cubic Lucas cryptosystems. The new algorithm is designed based on new properties of the cubic Lucas function and mathematical techniques. To illustrate the efficiency of our algorithm, an analysis was carried out with different size parameters and the performance of the proposed and previously existing algorithms was evaluated with experimental data and mathematical analysis.