We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
In previous work, Ohno conjectured, and Nakagawa proved, relations between the counting functions of certain cubic fields. These relations may be viewed as complements to the Scholz reflection principle, and Ohno and Nakagawa deduced them as consequences of ‘extra functional equations’ involving the Shintani zeta functions associated to the prehomogeneous vector space of binary cubic forms. In the present paper, we generalize their result by proving a similar identity relating certain degree-$\ell$ fields to Galois groups $D_{\ell }$ and $F_{\ell }$, respectively, for any odd prime $\ell$; in particular, we give another proof of the Ohno–Nakagawa relation without appealing to binary cubic forms.
Let $f(x) = \Sigma a_ix^i$ be a monic polynomial of degree $n$ whose coefficients are algebraically independent variables over a base field $k$ of characteristic 0. We say that a polynomial $g(x)$ is generating (for the symmetric group) if it can be obtained from $f(x)$ by a nondegenerate Tschirnhaus transformation. We show that the minimal number ${\rm d}_k(n)$ of algebraically independent coefficients of such a polynomial is at least $[n/2]$. This generalizes a classical theorem of Felix Klein on quintic polynomials and is related to an algebraic form of Hilbert's 13th problem.
Our approach to this question (and generalizations) is based on the idea of the ‘essential dimension’ of a finite group $G$: the smallest possible dimension of an algebraic $G$-variety over $k$ to which one can ‘compress’ a faithful linear representation of $G$. We show that ${\rm d}_k(n)$ is just the essential dimension of the symmetric group ${\rm S}_n$. We give results on the essential dimension of other groups. In the last section we relate the notion of essential dimension to versal polynomials and discuss their relationship to the generic polynomials of Kuyk, Saltman and DeMeyer.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.