We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
In this paper, we investigate pigeonhole statistics for the fractional parts of the sequence $\sqrt {n}$. Namely, we partition the unit circle $ \mathbb {T} = \mathbb {R}/\mathbb {Z}$ into N intervals and show that the proportion of intervals containing exactly j points of the sequence $(\sqrt {n} + \mathbb {Z})_{n=1}^N$ converges in the limit as $N \to \infty $. More generally, we investigate how the limiting distribution of the first $sN$ points of the sequence varies with the parameter $s \geq 0$. A natural way to examine this is via point processes—random measures on $[0,\infty )$ which represent the arrival times of the points of our sequence to a random interval from our partition. We show that the sequence of point processes we obtain converges in distribution and give an explicit description of the limiting process in terms of random affine unimodular lattices. Our work uses ergodic theory in the space of affine unimodular lattices, building upon work of Elkies and McMullen [Gaps in $\sqrt {n}$ mod 1 and ergodic theory. Duke Math. J.123 (2004), 95–139]. We prove a generalisation of equidistribution of rational points on expanding horocycles in the modular surface, working instead on nonlinear horocycle sections.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.