We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
This paper proves the finite axiomatizability of transitive modal logics of finite depth and finite width w.r.t. proper-successor-equivalence. The frame condition of the latter requires, in a rooted transitive frame, a finite upper bound of cardinality for antichains of points with different sets of proper successors. The result generalizes Rybakov’s result of the finite axiomatizability of extensions of $\mathbf {S4}$ of finite depth and finite width.
This paper is a follow-up to [4], in which a mistake in [6] (which spread also to [9]) was corrected. We give a strenghtening of the main result on the semantical nonconservativity of the theory of PT− with internal induction for total formulae ${(\rm{P}}{{\rm{T}}^ - } + {\rm{INT}}\left( {{\rm{tot}}} \right)$, denoted by PT− in [9]). We show that if to PT− the axiom of internal induction for all arithmetical formulae is added (giving ${\rm{P}}{{\rm{T}}^ - } + {\rm{INT}}$), then this theory is semantically stronger than ${\rm{P}}{{\rm{T}}^ - } + {\rm{INT}}\left( {{\rm{tot}}} \right)$. In particular the latter is not relatively truth definable (in the sense of [11]) in the former. Last but not least, we provide an axiomatic theory of truth which meets the requirements put forward by Fischer and Horsten in [9]. The truth theory we define is based on Weak Kleene Logic instead of the Strong one.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.