We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Given two structures ${\cal M}$ and ${\cal N}$ on the same domain, we say that ${\cal N}$ is a reduct of ${\cal M}$ if all $\emptyset$-definable relations of ${\cal N}$ are $\emptyset$-definable in ${\cal M}$. In this article the reducts of the Henson digraphs are classified. Henson digraphs are homogeneous countable digraphs that omit some set of finite tournaments. As the Henson digraphs are ${\aleph _0}$-categorical, determining their reducts is equivalent to determining the closed supergroups G ≤ Sym(ℕ) of their automorphism groups.
A consequence of the classification is that there are ${2^{{\aleph _0}}}$ pairwise noninterdefinable Henson digraphs which have no proper nontrivial reducts. Taking their automorphisms groups gives a positive answer to a question of Macpherson that asked if there are ${2^{{\aleph _0}}}$ pairwise nonconjugate maximal-closed subgroups of Sym(ℕ). By the reconstruction results of Rubin, these groups are also nonisomorphic as abstract groups.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.