We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
This chapter discusses the larger implications of Sanhe gods’ experiences. It analyzes the various forms of their resistance, from non-compliance to direct confrontation, and the state’s mechanisms of control, from gentrification to coercion. It ends with a discussion on Sanhe gods’ precarious future, as flexible employment becomes more widespread and the prospects for settling down in cities reduce even when the great gods have intentions to stay. It presents migrant workers’ experiences not only of factory hopping but also, and increasingly, of city hopping, as both livelihood strategies and coping strategies formed in response to state policies and repression.
Contemporary technologies for offshore electricity generation and transmission enable sea uses of types and at scales that could not have been envisaged when the text of UNCLOS was agreed. The chapter considers whether UNCLOS is able to accommodate the offshore renewables revolution. It focuses on offshore wind energy, which is likely to see massive growth during the next three decades as the world decarbonizes. The review finds that UNCLOS does not always make adequate legal provision for them. Support will be needed from national laws, interstate agreements, and resolutions and guidelines of international organizations such as the International Maritime Organization to fill gaps in the law, clarify uncertainties and to meet challenges posed by offshore wind’s growth. Further regulation by states of offshore wind will also be needed to address the environmental effects of relevant development in line with duties for marine environmental protection, and to answer difficult legal questions raised by the pursuit of development that may itself cause significant environmental harm to address the environmental threats posed by climate change.
Chapter 5 is mainly devoted to the interaction between waves and immersed bodies. In general, an immersed body may oscillate in six different modes, three translating modes (surge, sway, heave) and three rotating modes (roll, pitch, yaw). An oscillating body radiates waves, and an incident wave may induce a corresponding excitation force for each one of the six modes. When a body oscillates, it radiates waves. Such radiated waves and excitation forces are related by so-called reciprocity relationships. Such relations are derived not only for a single oscillating body but even for a group (or 'array') of immersed bodies. Axisymmeric bodies and two-dimensional bodies are discussed in separate sections of the chapter. Although most of this chapter discusses wave-body dynamics in the frequency domain, a final section treats an immersed body in the time domain.
Referring to a simple illustration, a verbal explanation is given by the essential, but perhaps paradoxical, statement that to absorb wave energy from a wave by means of an oscillating system, it is required that the system radiates a wave which interferes destructively with the incident wave. Then various mathematical relations are derived concerning the conditions for an oscillating body to remove energy from an incident wave. The mathematical conditions for wave-power absorption may be illustrated as a paraboloid-shaped 'island' on an infinite complex-plane 'ocean' surface. The top of this 'island' corresponds to maximum absorbed power. An additional matter is the optimum control of a wave-energy converter (WEC) body. Thus far, the WEC body's shape and oscillation mode have been taken into account, but not its physical size. The latter is an important parameter related to the cost of the WEC, when the Budal upper bound is explained and discussed. Another important phenomenon, related to the Keulegan–Carpenter number, is discussed, in relation to an example of a WEC body. In a final section of the chapter, a WEC body, oscillating in several modes of motion, is discussed.
The first part of Chapter 7 deals with oscillating water columns (OWCs). The concepts of radiation conductance and susceptance are introduced. The former is related to the radiated power, whereas the latter represents the reactive power. Expressions for the power absorbed by the OWC are derived, which are analogous to those of the oscillating body WEC. The potential energy of the OWC is also discussed. The last part of Chapter 7 deals with wave energy converters that move in modes other than the six conventional rigid-body modes. The theory of generalised modes are described, and some examples are given to illustrate the utility of the theory.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.