This paper proposes a triple-band fractal slot antenna with enhanced gain operating at frequencies of 2.7, 3.5, and 4.8 GHz for microwave wireless power transmission. The antenna achieved more than 3 dB gain by preserving the symmetrical defected reflector structure behind it at a length of 0.54λ/4, where λ is the wavelength in free space at 2.7 GHz. A 50 Ω micro-strip line coupled at 66 mm length helps feed the triple band slot antenna. The purpose of a triple-band rectifier circuit with an impedance network is to convert the radio frequency (RF) signal into direct current. The measurements reveal that the antenna’s enhanced gain is 8.8 dB, and the rectifier’s highest RF signal to direct current conversion efficiency is 74.3%. For the combined configuration unit of measure, the antenna is assimilated into the rectifier via back-to-back 50 Ω Sub Miniature Version A (SMA) connectors. The highest recorded efficiency of 49.67% was obtained for the rectenna at optimum values of 1 kΩ resistive load and −5 dBm power input. It has been revealed that the rectifier-integrated antenna presented is effective for low-input RF energy capture and power transmission.