This paper develops the method of fundamental solutions (MFS) to solve eigenfrequencies of plate vibrations of multiply connected domains. The complex-valued MFS combined with the mix potential method are utilized in order to avoid the spurious eigenvalues. The benchmarked problems of annular plates with clamped, simply supported and free boundary conditions are studied analytically as well as numerically. Wherein the results demonstrate that all true eigenvalues are contained and no spurious eigenvalues are included. In the analytical studies, the continuous version of the MFS is utilized to obtain the eigenequation by applying the degenerate kernels and Fourier series. The proposed numerical method is free from singularities, meshes, and numerical integrations and thus can be easily utilized to solve plate vibrations free from spurious eigenvalues in multiply connected domains.