We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Laser–plasma accelerators (LPAs) have great potential to realize a compact X-ray free-electron laser (FEL), which is limited by the beam properties currently. Two-color high-intensity X-ray FEL provides a powerful tool for probing ultrafast dynamic systems. In this paper, we present a simple and feasible method to generate a two-color X-ray FEL pulse based on an LPA beam. In this scheme, time-dependent mismatch along the bunch is generated and manipulated by the designed lattice system, enabling FEL lasing at different wavelength within two undulator sections. The time separation between the two pulses can be precisely adjusted by varying the time-delay chicane. Numerical simulations show that two-color soft X-ray FELs with gigawatt-level peak power and femtosecond duration can be generated, which confirm the validity and feasibility of the scheme.
In this study, we investigate a new simple scheme using a planar undulator (PU) together with a properly dispersed electron beam ($e$ beam) with a large energy spread (${\sim}1\%$) to enhance the free-electron laser (FEL) gain. For a dispersed $e$ beam in a PU, the resonant condition is satisfied for the center electrons, while the frequency detuning increases for the off-center electrons, inhibiting the growth of the radiation. The PU can act as a filter for selecting the electrons near the beam center to achieve the radiation. Although only the center electrons contribute, the radiation can be enhanced significantly owing to the high-peak current of the beam. Theoretical analysis and simulation results indicate that this method can be used for the improvement of the radiation performance, which has great significance for short-wavelength FEL applications.
We report on experiments aimed at the generation and characterization of solid density plasmas at the free-electron laser FLASH in Hamburg. Aluminum samples were irradiated with XUV pulses at 13.5 nm wavelength (92 eV photon energy). The pulses with duration of a few tens of femtoseconds and pulse energy up to 100 µJ are focused to intensities ranging between 1013 and 1017 W/cm2. We investigate the absorption and temporal evolution of the sample under irradiation by use of XUV and optical spectroscopy. We discuss the origin of saturable absorption, radiative decay, bremsstrahlung and atomic and ionic line emission. Our experimental results are in good agreement with simulations.
The minimum irradiance needed to overcome amplified spontaneous emission (ASE) of a seed beam injected into a laser amplifier is evaluated. The treatment is particularly applicable to extreme ultraviolet (EUV) and X-ray laser schemes to inject laser harmonic radiation as a seed into (1) plasma laser amplifiers and (2) free-electron lasers. Simple expressions and calculations are given for the minimum injected irradiance required for amplification of the injected seed beam to exceed ASE from the amplifier, including the effects of gain saturation, assuming one dimensional radiative transfer.
Here we report on the present status of our project on statistical modelling of charge dynamics within irradiated samples. Boltzmann statistical approach to model the radiation damage in samples irradiated by FEL photons is tested in a study case of a spherically symmetric xenon cluster. Qualitative agreement between the model predictions and the experimental data is found. The results obtained demonstrate the potential of the statistical method for describing the non-equilibrium dynamics of samples exposed to FEL radiation.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.