We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
This chapter discusses a generic least squares method and a special situation when the base functions are orthogonal to each other, which makes the solution explicit; in addition, we learn that the essence of the least squares method can be viewed as a way to project the target function in a higher dimension onto a lower dimension formed by the base functions. The least squares method ensures that the error vector is “perpendicular” to the projected (or approximate) vector in the base function dimension (a lower dimension) and thus has the shortest “length” or minimized error. Although this chapter does not have much computation involved, it is very important for a good understanding of the meaning of many techniques and methods in the subsequent chapters.
Let $q$ be an algebraic integer of degree $d\ge 2$. Consider the rank of the multiplicative subgroup of ${{\mathbb{C}}^{*}}$ generated by the conjugates of $q$. We say $q$ is of full rank if either the rank is $d-1$ and $q$ has norm $\pm 1$, or the rank is $d$. In this paper we study some properties of $\mathbb{Z}[q]$ where $q$ is an algebraic integer of full rank. The special cases of when $q$ is a Pisot number and when $q$ is a Pisot-cyclotomic number are also studied. There are four main results.
(1) If $q$ is an algebraic integer of full rank and $n$ is a fixed positive integer, then there are only finitely many $m$ such that $\text{disc}\left( \mathbb{Z}\left[ {{q}^{m}} \right] \right)=\text{disc}\left( \mathbb{Z}\left[ {{q}^{n}} \right] \right)$.
(2) If $q$ and $r$ are algebraic integers of degree $d$ of full rank and $\mathbb{Z}[{{q}^{n}}]=\mathbb{Z}[{{r}^{n}}]$ for infinitely many $n$, then either $q=\omega {r}'$ or $q=\text{Norm}{{(r)}^{2/d}}\omega /r'$ , where $r'$ is some conjugate of $r$ and $\omega $ is some root of unity.
(3) Let $r$ be an algebraic integer of degree at most 3. Then there are at most 40 Pisot numbers $q$ such that $\mathbb{Z}[q]=\mathbb{Z}[r]$.
(4) There are only finitely many Pisot-cyclotomic numbers of any fixed order.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.