Let $\mathcal{A}$ be a closed, point-separating sub-algebra of $C_0(X)$, where $X$ is a locally compact Hausdorff space. Assume that $X$ is the maximal ideal space of $\mathcal{A}$. If $f\in\mathcal{A}$, the set $f(X)\cup\{0\}$ is denoted by $\sigma(f)$. After characterizing the points of the Choquet boundary as strong boundary points, we use this equivalence to provide a natural extension of the theorem in [10], which, in turn, was inspired by the main result in [6], by proving the ‘Main Theorem’: if $\varPhi:\mathcal{A}\rightarrow\mathcal{A}$ is a surjective map with the property that $\sigma(fg)=\sigma(\varPhi(f)\varPhi(g))$ for every pair of functions $f,g\in\mathcal{A}$, then there is an onto homeomorphism $\varLambda:X\rightarrow X$ and a signum function $\epsilon(x)$ on $X$ such that
$$ \varPhi(f)(\varLambda(x))=\epsilon(x)f(x) $$
for all $x\in X$ and $f\in\mathcal{A}$.
AMS 2000 Mathematics subject classification: Primary 46J10; 46J20