The 50th anniversary of the application of electron probe microanalysis (EPMA) to the Earth Sciences provides an opportunity for an assessment of the state-of-the-art of the technique. Stemming from the introduction of the first automated instruments, the latest developments of EPMA and some typical applications are reviewed with an eye to the future. The most noticeable recent technical achievements such as the field-emission electron gun, the latest generation of energy and wavelength dispersive spectrometers, and the development of analytical methods based on new sets of first principle data obtained by the use of sophisticated computer codes, allow for the extension of the method to the analysis of trace elements, ultra-light elements (down to Li), small particles, and thin films, with a high degree of accuracy and precision and within a considerably reduced volume of interaction. A number of working examples and a thorough list of references provide the reader with a working knowledge of the capabilities and limitations of EPMA today.