In this paper, the authors characterize second-order Sobolev spaces
${{W}^{2,p}}({{\mathbb{R}}^{n}})$
, with
$p\,\in \,[2,\,\infty )$
and
$n\,\in \,\mathbb{N}\,\text{or}\,p\,\in \,(1,\,2)\,\text{and}\,n\,\in \,\left\{ 1,\,2,\,3 \right\}$
, via the Lusin area function and the Littlewood–Paley
$g_{\text{ }\!\!\lambda\!\!\text{ }}^{*}$
-function in terms of ball means.