We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
In this paper, we present a semi-empirical calibration between the oxygen abundance and the N2 emission-line ratio for low ionisation nuclear emission regions (LINERs). This relation was derived by comparing the optical spectroscopic data of 118 nuclear spaxels classified as LINERs using three different BPT diagrams from the Mapping Nearby Galaxies survey (MaNGA) and sub-classified as weak (wAGN, 84 objects) and strong (sAGN, 34 objects) active galactic nucleus (AGN) from the WHAN diagnostic diagram and photoionisation model results obtained with the cloudy code assuming gas accretion into a black hole (representing an AGN). We found that our wAGN LINERs exhibit an oxygen abundance in the range of $8.50 \lesssim \mathrm{12+\log(O/H)} \lesssim 8.90 $, with an average value of $\mathrm{12+\log(O/H)}=8.68$, while our sAGN LINERs exhibit an oxygen abundance in the range of $8.51 \lesssim \: \mathrm{12+\log(O/H)} \: \lesssim \: 8.81 $, with an average value of $\mathrm{12+\log(O/H)}=8.65$. Our abundance estimations are in good agreement with those derived for another two different samples one of them with 463 Seyfert 2 objects and the other with 43 LINERs galaxies ionised by post-AGB stars, showing that the assumptions of our models are likely suitable for wAGN and sAGN LINERs. A relation between the equivalent width of the observed H$\alpha$ emission-line and the estimated ionisation parameter provided by models was obtained. Our results also suggest that LINERs does not show a clear correlation between oxygen abundances and the stellar mass of the hosting galaxies.
The central parsec of AGN is a key region for the launching of winds, and near-infrared interferometry is a unique tool for its study. With GRAVITY at the VLT interferometer, we can now spatially resolve not just the hot dust continuum on milliarcsecond ‘torus’ scales through imaging but also the broad-line region (BLR) on microarcsecond scales through spectro-astrometry. We have mapped the kinematics of the BLR in seven nearby AGN, measured sizes of the hot dust for seventeen AGN, and reconstructed dust images for two AGN. BLR kinematics has allowed us to measure the BLR size and supermassive black hole mass independent of reverberation mapping. The ongoing GRAVITY+ upgrade will greatly enhance the sensitivity and sky coverage of GRAVITY, and first results demonstrate its power for AGN science at z∼2 and beyond.
The mass accretion rate determines the black hole accretion mode and the corresponding efficiency of active galactic nuclei (AGNs) feedback. In large-scale simulations studying galaxy formation and evolution, the Bondi radius can be at most marginally resolved. In these simulations, the Bondi accretion formula is always used to estimate the black hole accretion rate. The Bondi solution can not represent the real accretion process. We perform 77 simulations with varying density and temperature at Bondi radius. We find a formula to calculate the black hole accretion rate based on gas density and temperature at Bondi radius. We find that the formula can accurately predict the luminosity of observed low-luminosity AGNs. This formula can be used in sub-grid models in large-scale simulations with AGNs feedback.
The galaxy Mrk 590 is one of the few known ‘changing-look’ Active Galactic Nuclei (AGN) to have transitioned between states twice, having just increased its flux after a period of ˜10 years of low activity. In addition to the increase in flux, the optical broad emission lines have reappeared but show a different profile than what was observed before they disappeared. The gas motions in the host galaxy of this changing-look AGN show outflows and dynamical structures able to drive gas to the nucleus, suggesting an interplay between inflow and outflow in the centre of the galaxy.
Nuclear star clusters (NSCs) are stellar systems similar in size to globular clusters (GCs) but extremely dense, comparable only to some GCs and ultra-compact dwarfs. They are present in galaxies with a wide range of masses, morphologies and gas content. There are several formation scenarios proposed for the formation of such objects, such as the merger of GCs or extreme star formation caused by the inflow of gas. Recent studies show that the presence of an NSC is related to galaxy stellar mass. Moreover, it has been suggested that NSCs are more often found in high density environments. In our work, we use deep imaging of the core regions of the Coma cluster down to an absolute magnitude of –8.2 and found that in this environment the nucleation fraction is higher than in the Virgo and Fornax clusters. We find nucleated galaxies in Coma as faint as –11.2 mag.
Galaxy nuclei are a unique laboratory to study gas flows. Their high-resolution imaging in galactic nuclei are instrumental in the study of the fueling and feedback of star formation and nuclear activity in nearby galaxies. Several fueling mechanisms can now be confronted in detail with observations done with state-of-the-art interferometers. Furthermore, the study of gas flows in galactic nuclei can probe the feedback of activity on the interstellar medium of galaxies. Feedback action from star formation and AGN activity is invoked to prevent galaxies from becoming overly massive, but also to explain scaling laws like black hole (BH)-bulge mass correlations and the bimodal color distribution of galaxies. This close relationship between galaxies and their central supermassive BH can be described as co-evolution. There is mounting observational evidence for the existence of gas outflows in different populations of starbursts and active galaxies, a manifestation of the feedback of activity. We summarize the main results recently obtained from the observation of galactic inflows and outflows in a variety of active galaxies with current millimeter interferometers such as ALMA or the IRAM array.
Active galactic nuclei can be identified in deep HST surveys using different selection techniques and multiwavelength data. We aim to produce a complete sample of AGN in the GOODS South and North fields by combining X-ray, optical and mid-IR selection criteria, including galaxies displaying nuclear optical variability.
We observed the H2O maser at the nucleus of the Seyfert 2, IC 2560, using the VLBA and the phased VLA. The systemic, red-shifted and blue-shifted maser features and a continuum component have been detected. We propose a maser disk in the nuclear region. The systemic and red-shifted features are emitted from a nearly edge-on disk with the position angle of PA = −47°. The thickness is 2H < 0.025 pc. The binding mass is 3.5 × 106M⊙. Assuming the Keplerian rotation, the radii at the disk are r = 0.087-0.335 pc and the rotation velocities are 213–418 km s−1. The mean density within the inner radius is 1.3 × 109M⊙ pc−3, suggesting a massive black hole at the center. A continuum component is considered as a jet ejected from the nucleus, with an angle of 70° from the disk. The blue-shifted maser feature is located on the continuum component, being interpreted to be a ‘jet maser’.
We present preliminary results on a spectal analysis of quasars observed by the X-ray observatory Ginga. Simple power-law models with fixed Galactic absorbtion provide an adequate description of the spectra for most of the sources in the 2–18 keV band. A small number of sources show evidence for a feature at 6.4 keV (in the source rest frame) due to Fe line emission. Maximum likelihood and Spearman rank tests were used to investigate the relationship between radio loudness and X-ray spectral index in this class of object. These tests showed, respectively, that the mean X-ray spectral index of radio quiet quasars (RQQs) is significantly different from that of flat spectrum radio loud quasars (FRSQs) at the >99% level, and that the dominant relationship with spectral index is radio loudness (not X-ray luminosity or redshift) at >99% significance. This last result has not previously been demonstrated in this band, but agrees with findings in the lower energy Einstein band (0.5–3.5 keV). These results are discussed in the context of current unified models.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.