We review the properties of the gas surrounding high-redshift gamma-ray bursts (GRBs) assessed through the analysis of damped Lyman-alpha systems (DLAs) identified in their afterglow spectra. These GRB-DLAs are characterized by large H I column densities with a median of N(H I) = 1021.7 cm−2, no molecular gas signatures, metallicities ranging from 1/100 to nearly solar with a median exceeding 1/10 solar, and no anomalous abundance patterns. The detection of the atomic Mg lines and the time-variability of the fine-structure lines demonstrates that the majority of the neutral gas along the GRB sightlines is located between 50 pc and a few kpc from the GRB. This implies that this gas is presumably associated with the ambient interstellar medium of the host galaxy and that the derived properties from low-ionization lines do not directly constrain the local environment of the GRB progenitor. The highly ionized gas, traced by N V lines, which could result from a pre-existing H II region produced by the GRB progenitor and neighboring OB stars, appears on the other hand to be very local to the GRB at about 10 pc, yielding a snapshot of the medium's physical conditions at this radius.