We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
This chapter moves from regression to methods that focus on the pattern presented by multiple variables, albeit with applications in regression analysis. A strong focus is to find patterns that beg further investigation, and/or replace many variables by a much smaller number that capture important structure in the data. Methodologies discussed include principal components analysis and multidimensional scaling more generally, cluster analysis (the exploratory process that groups “alike” observations) and dendogram construction, and discriminant analysis. Two sections discuss issues for the analysis of data, such as from high throughput genomics, where the aim is to determine, from perhaps thousands or tens of thousands of variables, which are shifted in value between groups in the data. A treatment of the role of balance and matching in making inferences from observational data then follows. The chapter ends with a brief introduction to methods for multiple imputation, which aims to use multivariate relationships to fill in missing values in observations that are incomplete, allowing them to have at least some role in a regression or other further analysis.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.