We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Reconstruction of gene interaction networks from experimental data provides a deep understanding of the underlying biological mechanisms. The noisy nature of the data and the large size of the network make this a very challenging task. Complex approaches handle the stochastic nature of the data but can only do this for small networks; simpler, linear models generate large networks but with less reliability.
Methods:
We propose a divide-and-conquer approach using probabilistic graph representations and external knowledge. We cluster the experimental data and learn an interaction network for each cluster, which are merged using the interaction network for the representative genes selected for each cluster.
Results:
We generated an interaction atlas for 337 human pathways yielding a network of 11,454 genes with 17,777 edges. Simulated gene expression data from this atlas formed the basis for reconstruction. Based on the area under the curve of the precision-recall curve, the proposed approach outperformed the baseline (random classifier) by ∼15-fold and conventional methods by ∼5–17-fold. The performance of the proposed workflow is significantly linked to the accuracy of the clustering step that tries to identify the modularity of the underlying biological mechanisms.
Conclusions:
We provide an interaction atlas generation workflow optimizing the algorithm/parameter selection. The proposed approach integrates external knowledge in the reconstruction of the interactome using probabilistic graphs. Network characterization and understanding long-range effects in interaction atlases provide means for comparative analysis with implications in biomarker discovery and therapeutic approaches. The proposed workflow is freely available at http://otulab.unl.edu/atlas.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.