We investigate the existence of families of symmetric periodic solutions of second kind as continuation of the elliptical orbits of the two-dimensional Kepler problem for certain symmetric differentiable perturbations using Delaunay coordinates. More precisely, we characterize the sufficient conditions for its existence and its type of stability is studied. The estimate on the characteristic multipliers of the symmetric periodic solutions is the new contribution to the field of symmetric periodic solutions. In addition, we present some results about the relationship between our symmetric periodic solutions and those obtained by the averaging method for Hamiltonian systems. As applications of our main results, we get new families of periodic solutions for: the perturbed hydrogen atom with stark and quadratic Zeeman effect, for the anisotropic Seeligers two-body problem and to the planar generalized Størmer problem.