We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
In this chapter we draw motivation from real-world networks and formulate random graph models for them. We focus on some of the models that have received the most attention in the literature, namely, Erdos–Rényi random graphs, inhomogeneous random graphs, configuration models, and preferential attachment models. We follow Volume 1, both for the motivation as well as for the introduction of the random graph models involved. Furthermore, we add some convenient additional results, such as degree-truncation for configuration models and switching techniques for uniform random graphs with prescribed degrees. We also discuss preliminaries used in the book, for example concerning power-law distributions.
In this chapter we investigate the small-world structure in rank-1 and general inhomogeneous random graphs. For this, we develop path-counting techniques that are interesting in their own right.
In this chapter we introduce the general setting of inhomogeneous random graphs that are generalizations of the Erdos–Rényi and generalized random graphs. In inhomogeneous random graphs, the status of edges is independent with unequal edge-occupation probabilities. While these edge probabilities are moderated by vertex weights in generalized random graphs, in the general setting they are described in terms of a kernel. The main results in this chapter concern the degree structure, the multi-type branching process local limits, and the phase transition in these inhomogeneous random graphs. We also discuss various examples, and indicate that they can have rather different structure.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.