We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We generalize the notions of the orbifold Euler characteristic and of the higher-order orbifold Euler characteristics to spaces with actions of a compact Lie group using integration with respect to the Euler characteristic instead of the summation over finite sets. We show that the equation for the generating series of the kth-order orbifold Euler characteristics of the Cartesian products of the space with the wreath products actions proved by Tamanoi for finite group actions and by Farsi and Seaton for compact Lie group actions with finite isotropy subgroups holds in this case as well.
Following Radford's proof of Lagrange's theorem for pointed Hopf algebras, we prove Lagrange‘s theorem for Hopf monoids in the category of connected species. As a corollary, we obtain necessary conditions for a given subspecies $\mathbf{k}$ of a Hopf monoid $\mathbf{h}$ to be a Hopf submonoid: the quotient of any one of the generating series of $\mathbf{h}$ by the corresponding generating series of $\mathbf{k}$ must have nonnegative coefficients. Other corollaries include a necessary condition for a sequence of nonnegative integers to be the dimension sequence of a Hopf monoid in the form of certain polynomial inequalities and of a set-theoretic Hopf monoid in the form of certain linear inequalities. The latter express that the binomial transform of the sequence must be nonnegative.
We relate a one-parametric generating function for the squares of Legendre polynomials to an arithmetic hypergeometric series whose parametrisation by a level 7 modular function was recently given by Cooper. By using this modular parametrisation we resolve a subfamily of identities involving $1/ \pi $ which was experimentally observed by Sun.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.