Information on genetic diversity and genetic relationships among taxa of Brassica rapa (n = 10, AA genome) is currently limited. Grown for oil, vegetable and fodder use in Europe and Asia, previous studies have indicated western and eastern groups corresponding to independent centres of origin. This study evaluated patterns and levels of genetic diversity in 93 accessions [includes 25 Agriculture and Agri-Food Canada (AAFC) breeding lines (BL)] of B. rapa based on 307 amplified fragment length polymorphisms (AFLP), testing subspecific separateness and the affiliation of four previously unassigned AA genome species (B. perviridis, B. purpuraria, B. ruvo and B. septiceps). AFLP data revealed three main clusters (I, II, III) corresponding to European (I), Indian (III), and a mixed Asian/European/Indian (II) purported origins of the taxa, with several subclusters observed in I and II. Mean AFLP polymorphism levels for Asian, European, Indian and AAFC-BL accessions were 79, 74, 66 and 62%, respectively. Few of the subspecies formed unique clusters and some, particularly subspecies chinensis and pekinensis, were assigned to several clusters. AFLP-based genetic distance information can be used by breeders to select diverse genotypes for cultivar development and fingerprinting of genotypes/cultivars. For example, a single AFLP primer pair was sufficient to uniquely identify all breeding lines in the AAFC B. rapa breeding programme.