We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The adoption of genomic technologies in the context of hospital-based health technology assessment presents multiple practical and organizational challenges.
Objective
This study aimed to assist the Instituto Português de Oncologia de Lisboa Francisco Gentil (IPO Lisboa) decision makers in analyzing which acute myeloid leukemia (AML) genomic panel contracting strategies had the highest value-for-money.
Methods
A tailored, three-step approach was developed, which included: mapping clinical pathways of AML patients, building a multicriteria value model using the MACBETH approach to evaluate each genomic testing contracting strategy, and estimating the cost of each strategy through Monte Carlo simulation modeling. The value-for-money of three contracting strategies – “Standard of care (S1),” “FoundationOne Heme test (S2),” and “New diagnostic test infrastructure (S3)” – was then analyzed through strategy landscape and value-for-money graphs.
Results
Implementing a larger gene panel (S2) and investing in a new diagnostic test infrastructure (S3) were shown to generate extra value, but also to entail extra costs in comparison with the standard of care, with the extra value being explained by making available additional genetic information that enables more personalized treatment and patient monitoring (S2 and S3), access to a broader range of clinical trials (S2), and more complete databases to potentiate research (S3).
Conclusion
The proposed multimethodology provided IPO Lisboa decision makers with comprehensive and insightful information regarding each strategy’s value-for-money, enabling an informed discussion on whether to move from the current Strategy S1 to other competing strategies.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.