We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We prove several results concerning the existence of surfaces of section for the geodesic flows of closed orientable Riemannian surfaces. The surfaces of section $\Sigma $ that we construct are either Birkhoff sections, which means that they intersect every sufficiently long orbit segment of the geodesic flow, or at least they have some hyperbolic components in $\partial \Sigma $ as limit sets of the orbits of the geodesic flow that do not return to $\Sigma $. In order to prove these theorems, we provide a study of configurations of simple closed geodesics of closed orientable Riemannian surfaces, which may have independent interest. Our arguments are based on the curve shortening flow.
For
$k \geq 2$
, we prove that in a
$C^{1}$
-open and
$C^{k}$
-dense set of some classes of
$C^{k}$
-Anosov flows, all Lyapunov exponents have multiplicity one with respect to appropriate measures. The classes are geodesic flows with equilibrium states of Holder-continuous potentials, volume-preserving flows, and all fiber-bunched Anosov flows with equilibrium states of Holder-continuous potentials.
A Riemannian manifold $M$ has higher hyperbolic rank if every geodesic has a perpendicular Jacobi field making sectional curvature $-1$ with the geodesic. If, in addition, the sectional curvatures of $M$ lie in the interval $[-1,-\frac{1}{4}]$ and $M$ is closed, we show that $M$ is a locally symmetric space of rank one. This partially extends work by Constantine using completely different methods. It is also a partial counterpart to Hamenstädt’s hyperbolic rank rigidity result for sectional curvatures $\leq -1$, and complements well-known results on Euclidean and spherical rank rigidity.
We consider the semiclassical Schrödinger equation on a compact negatively curved surface. For any sequence of initial data microlocalized on the unit cotangent bundle, we look at the quantum evolution (below the Ehrenfest time) under small perturbations of the Schrödinger equation, and we prove that, in the semiclassical limit, and for typical perturbations, the solutions become equidistributed on the unit cotangent bundle.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.