DBE TECHNOLOGY, BGR and GRS are developing a methodology to demonstrate the safety of a repository for high-level waste and spent fuel (HLW/SF) in clays according to the requirements of the German regulating body. In particular, these requirements prescribe that the barrier effect of host rocks must not be compromised by a thermal impact resulting from HLW/SF emplacement. To substantiate and quantify this requirement, we carried out a literature survey of research on thermally-induced changes on clay properties. Effects thus compiled can be divided into thermo-hydro-mechanical and chemical-biological-mineralogical effects and were analysed with regard to their relevance to the integrity of clay host rocks. This analysis identified one effect of major influence within each group: thermal expansion and compaction as well as results of microbial activities. Importantly, it further revealed that a moderate temperature increase above 100°C cannot be expected to compromise the integrity of the geological barrier according to the current knowledge state. Evidence is presented in this paper that temperature increases up to 150°C can actually contribute to an improved performance of a radioactive waste repository by increasing the consolidation of the clay and sterilizing the repository's near-field to depress the deteriorative microbial effects. A quantitative temperature criterion for thermal impact of HLW/SF on clay host rocks is accordingly proposed.