We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The split-attention principle states that when designing instruction, including multimedia instruction, it is important to avoid materials that require learners to split their attention between multiple sources of information. Instead, materials should be formatted so that disparate sources of information are physically and temporally integrated, thus obviating the need for learners to engage in mental integration. By eliminating the need to mentally integrate multiple sources of information, extraneous cognitive load is reduced, freeing resources for learning (germane cognitive load). This chapter provides the theoretical rationale, based on cognitive load theory, for the split-attention principle, and describes the major experiments that establish the validity of the principle, identifies the conditions under which it is most likely to occur, and indicates the instructional design implications when dealing with multimedia materials.
This chapter outlines the cognitive architecture used by cognitive load theory, and provides a general indicator of its relevance to instructional design issues associated with multimedia instruction. Cognitive load theory has been one of the theories used to integrate our knowledge of human cognitive structures and instructional design principles. It is concerned with the elements of that theory and its general implications for multimedia learning, specifically words presented in spoken or written form along with pictures or diagrams. The chapter considers categories of knowledge from an evolutionary perspective, followed by an outline of those aspects of human cognitive architecture relevant to instructional concerns, also considered from an evolutionary perspective. The chapter discusses three categories of cognitive load: intrinsic cognitive load, extraneous cognitive load and germane cognitive load. All categories of cognitive load are concerned with the acquisition, storage and use of biologically secondary information.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.