We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Longitudinal studies predictably experience non-random attrition over time. Among older adults, risk factors for attrition may be similar to risk factors for outcomes such as cognitive decline and dementia, potentially biasing study results.
Objective:
To characterize participants lost to follow-up which can be useful in the study design and interpretation of results.
Methods:
In a longitudinal aging population study with 10 years of annual follow-up, we characterized the attrited participants (77%) compared to those who remained in the study. We used multivariable logistic regression models to identify attrition predictors. We then implemented four machine learning approaches to predict attrition status from one wave to the next and compared the results of all five approaches.
Results:
Multivariable logistic regression identified those more likely to drop out as older, male, not living with another study participant, having lower cognitive test scores and higher clinical dementia ratings, lower functional ability, fewer subjective memory complaints, no physical activity, reported hobbies, or engagement in social activities, worse self-rated health, and leaving the house less often. The four machine learning approaches using areas under the receiver operating characteristic curves produced similar discrimination results to the multivariable logistic regression model.
Conclusions:
Attrition was most likely to occur in participants who were older, male, inactive, socially isolated, and cognitively impaired. Ignoring attrition would bias study results especially when the missing data might be related to the outcome (e.g. cognitive impairment or dementia). We discuss possible solutions including oversampling and other statistical modeling approaches.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.