We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
In this chapter, we introduce visualization techniques for networks, what problems we face, and solutions we use, to make those visualizations as effective as possible. Visualization is an essential tool for exploring network data, revealing patterns that may not be easily inferred from statistics alone. Although network visualization can be done in many ways, the most common approach is through two-dimensional node-link diagrams. Properly laying out nodes and choosing the mapping between network and visual properties is essential to create an effective visualization, which requires iteration and fine-tuning. For dense networks, filtering or aggregating the data may be necessary. Following an iterative, back-and-forth workflow is essential, trying different layout methods and filtering steps to show the networks structure best while keeping the original questions and goals in mind. Visualization is not always the endpoint of a network analysis but can also be a useful step in the middle of an exploratory data analysis pipeline, similar to traditional statistical visualization of non-network data.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.