We investigate the mean-field dynamics of stochastic McKean differential equations with heterogeneous particle interactions described by large network structures. To express a wide range of graphs, from dense to sparse structures, we incorporate the recently developed graph limit theory of graphops into the limiting McKean–Vlasov equations. Global stability of the splay steady state is proven via a generalised entropy method, leading to explicit graph structure-dependent decay rates. We highlight the robustness of the entropy approach by extending the results to the closely related Sakaguchi–Kuramoto model with intrinsic frequency distributions. We also present central examples of random graphs, such as power law graphs and the spherical graphop, and analyse the limitations of the applied methodology.