Beginning with a seminal paper of Rényi, expansions in noninteger real bases have been widely studied in the last forty years. They turned out to be relevant in various domains of mathematics, such as the theory of finite automata, number theory, fractals or dynamical systems. Several results were extended by Daróczy and Kátai for expansions in complex bases. We introduce an adaptation of the so-called greedy algorithm to the complex case, and we generalize one of their main theorems.