We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The primary tool for analysing groups acting on trees is Bass--Serre Theory. It is comprised of two parts: a decomposition result, in which an action is decomposed via a graph of groups, and a construction result, in which graphs of groups are used to build examples of groups acting on trees. The usefulness of the latter for constructing new examples of `large (e.g.~nondiscrete) groups acting on trees is severely limited. There is a pressing need for new examples of such groups as they play an important role in the theory of locally compact groups. An alternative `local-to-global approach to the study of groups acting on trees has recently emerged, inspired by a paper of Marc Burger and Shahar Mozes, based on groups that are `universal with respect to some specified `local action. In recent work, the authors of this survey article have developed a general theory of universal groups of local actions, that behaves, in many respects, like Bass--Serre Theory. We call this the theory of local action diagrams. The theory is powerful enough to completely describe all closed groups of automorphisms of trees that enjoy Tits Independence Property $\propP{}$. This article is an introductory survey of the local-to-global behaviour of groups acting on trees and the theory of local action diagrams. The article contains many ideas for future research projects.
We generalize results of Thomas, Allcock, Thom–Petersen, and Kar–Niblo to the first $\ell ^{2}$-Betti number of quotients of certain groups acting on trees by subgroups with free actions on the edge sets of the graphs.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.